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Summary

we study the stability of delay differential equation by using the Lyapunov
method.

They,have had shown some definitions for this chapter.
the second Lyapunov method developed in two directions:

1-the first direction implies use of finite dimensional functions with an
additional condition for the derivative .this is a so called B.S.Razumikhin
condition.

2-the second method is a Lyapunov-Krasovskiy functional method, that will
IS using

The First chapter:

First, let’s identify the kinds of the Delay differential equations then we had
focused on delayed Logistic equation ,which is the subject of our study.

x(t)=Ff(x(t).x(t-1)), t>0 (1-
1)

Then we had shown when this linear equation, linear homogenoous, linear
nonhomogenoous,autonomous,non autonomous.

And we had studied Theorem existence, uniqueness, Continuous
dependence,and

Smoothing Property the solution of (1,1).

If D : C + R"™ is linear, continuous, and atomic at zero; and let
D:C—R".

The operator D is said to be stable if the zero solution of the
homogeneous

difference"” Equation:

Dy, =0, t>0,yy=yeCp



Is uniformly asymptotically stable.

to study stability investigation of differential system of equations with
delay time.

There are many methods:
The first method:

It’s depend upon the characteristic equation of the Delay differential
equations:

We had studied stability A neutral autonomous delay differential
functional equation

NFDE(D,L)

d
—Dx;=Lx 1-
s t (

19)

Note that when Dx;=x(t) ,then (1-19) becomes an RDDE .

For example ,
%(x(t)+px(t—r))=ax(t)+bx(t—r)+? x(t+0)k(6)do (1-20)

—T
With some examples about this method.
The second method :

the analysis of characteristic equations of linear autonomous delay
differential equations is often a formidable task even for equations with
just two discrete delays or systems with just one discrete delay !

The derivative of V along the solutions of an RDDE (f), is defined as:

V=V(t,6)= Tim [ V(t+hxen(t4) -V (t4)]

h—0"



With some examples about this method are present.

The third method :

An another, effective method of analyzing the stabilities of delay
differential equations involves the application of Razumikhin-type
theorems. This technique makes use of functions rather than functionals.
When using functionals, the theorems stated in the previous section
generally require that their derivatives along solutions of the considered
equations decrease monotonically.

Such a requirement makes finding a Liapunov functional a rather difficult
task, since the space C is much more complicated than R™.

The derivative of V along the solutions of an RDDE (f), is defined as:

V(e x(1) = Tim [ V(t+hx(t+h)-V(tx(1)]

h—0*
With some examples about this method.

The second chapter:

It represents the main focus of our study in which we took a system of
delay differential equations as(1.1):

to study the trivial solution of(1,1),we use Lyapunov method.
Then we have shown some definitions for this system.
The second Lyapunov method developed in two directions:

1-The first direction implies use of finite dimensional functions with an
additional condition for the derivative .this is a so called
B.S.Razumikhin condition.

2-The second method is a Lyapunov-Krasovskiy functional method, that
will is using .

Lyapunov-Krasovskiy functional method:



Denote vector-function defined on the interval —t<s<0 for each fixed
t>0.

the functional V| x(t),t] is determined on the vector-functions x(t+s),

—1<s5<0

that Played role a function derivative in theorems stability.

I5+V: lim supi{v[x(t+At),t+At]—v[x(t),t] }
A0 At

that I5+V Is Called right upper derivative number along solution of
system (1-1) .

we should draw our attention to the steps in development of the
Lyapunov-Krasovskiy functional method.

The first step:
Included development of a theoretical ground for the method.
The second step:

Used theoretical results to make theorems more application of the
functional.

Let us consider these two stages in more details.

The first step:

was to formulate theorems on stability by Lyapunov and asymptotic
Stability of the zero solution of system (1,1) and invert them .

All conditions of the theorems were formulated in terms of a uniform
norm



Ix®],= sup {[x(t+s)| |

—1<8<0
(*)

The main results are as follows
Theorem (stability by Lyapunov) (2-2-1):

Let differential equations of systems (1,1) be such that there exists a

functional V[ X(t).t] satisfying the following conditions:

D a([x®], )< Vx).1]
2) D, V[x(t),t]<0
Her a(r) is a continuous non-decreasing function for all t>0 and a(0) =0

Then the zero solution x(t)=0 of system (1,1)is stable according to

Lyapunov’s definition.
Theorem (Asymptotic stability) (2-2-2):

Let differential equations of systems (1,1) be such that there exists a

functional V[ X(t).t] satisfying the following conditions:

D a(]|x®)], )< V[x@.t]<b(|x®], )
2) D, VI[x(®).]<—¢(|x®], )

Her a(r),b(r),c(r) are continuous non-decreasing functions positive for
all and t>0 equal to zero at r = 0 then the zero solutionx(t)=0 of

system (1,1) is asymptotically stable .

For example, for a linear stationary system:

X(t)=Ax(t)+Bx(t—1) (2-
2)

With constant matrices A,B and a functional in a quadratic form:



0
Vx()]=x" (O)Hx(t)+ [ x" (t+5)Gx(t +s)ds

T

where H,G are constant positive definite matrices it is impossible to find
functions a(r) , c(r) that would satisfy theorem’s conditions.

Therefore, the second step formulated stability theorems in terms of such
norms, That are more convenient for constructing the functionals.

the second step:

Theorem (Asymptotic stability)(2-2-3):

Let differential equations of systems (1,1) be such that there exists a
functional V[X(t)’t] satisfying the following conditions:

1) a(|x(t)|)sV[x(t),t]sb(”x(t)”r)

2) D,V[x®),t]<—(|x®)])

then the zero solution x(t)=0 of system (1,1) is asymptotically stable .

Then we had shown find the Lyapunov-Krasovskiy functional method
for linear stationary system with delay (2,2).

Quadratic functionals in the following general form [7].

0
Vx()]=x"T (O)Hx(®)+ [ xT (t+s)K(s)x(t)dt

—T

0
+ [ xT(t+5)G(s)x(t +85)ds (2-

—T
00
+] IXT(t+Sl)|\/|(sl,32)x(t+32)d51d32

T—7T

3)

positive definite matrix :



her H is a constant quadratic nxn

K(s), G(s) , M(sy,s) are continuous matrices , and H, M(sy,s,) are
symmetric matrices .functionals are chosen in such a way that:

SVIx()]=Wx(1)]
Where :

W{x(t)]=xT ())Qx(t) +x ' (t—T)Rx(t) +x (t—7)Sx(t—1)

0 0
+ [ XT(t+5)DE)X(Ods + [ X (t+9EE)X(E+s)ds  (2-4)

T T
00

+ [ ] T (t+51)F(sp,52)X(t +55)dsyds;
-1

Q,R,S,D(s),E(s),F(sq,8,) for given matrices

These matrices satisfy conditions ensuring negative definiteness of
WI:X(S):I on system’s solutions.

Theorem (2-3-1):

Let for systems (1,1) a continuously differentiable function V(xt) exist

and satisfy the conditions:

1) a(|x])<V(x,1)

2) dVSi(t))

<0

For curves x(t) that satisfy:
V(X(s),s) < V(x(t),1),s <t
(condition B.S.Razumikhin)

Her a(r) is a continuous non-decreasing function positive for all t>0 and
a(0) = 0.Then the zero solution x(t)=0of system (1,1)is stable according



to Lyapunov.

Theorem (2-3-2):

Let for systems (1,1) a continuously differentiable function V(x,t

and satisfy the conditions:

For curves x(t) that satisfy:

V(x(s),s) < V(x(t),t),s <t

) exist

Her a(r),b(r),c(r) are continuous non-decreasing functions positive for all
and t>0 equal to zero at r = 0 then the zero solution x(t)=0 of system

(1,1) is asymptotically stable .

finally, we had studied asymptotic stability of systems with one delay in

the form :

X(t) = AX(t) + BX(t—1)
7)

First, we study stability’s the system:

dX(t)
dt
8)

= BX(t—r)

Distinguish two situation

The first situation:

If T=0, then the system (2-8) is asymptotically stable.

The second situation:

If 1€[0,1q) then

Theorem (2-4-1):

(2-

(2-



Let the eigenvalues of the matrix B be denoted by :
—0l1,— 09 ,—0A3,...,— Op
Suppose that the trivial solution of the non delay system

dY
- =BY(V) (2-

9)
Is asymptotically stable implying that

Re(a;)>0 (2-
10)

if| Re(oy) [e+farg (o)) |<m/2, j=12.n (2:1D)

Then the trivial solution of (3,8) is asymptotically stable.
Second ,we study stability’s the system (2,7)
Forthere,we use the following theorems :

Theorem (2-4-2):

Let A and B be real n x n constant matrices such that the trivial solution
of

dy(t)

dt
23)

—(A+B)Y(1) (2-

is asymptotically stable and let M, o be positive constants satisfying

HeWB)t <Me ' M>1; >0 -

24)

If tis small and



M[B[=(|AI+IBI)

o

<1 (2-
25)

then the trivial solution of (2,7) is asymptotically stable. Furthermore, if
X(t) denotes any solution of (2,7), then :

Xl 0 ez

Se[—r,r]
26)
in which B is the unique root of :
5 MIB|(*-1)(|Al+]Ble")

o Bt
27)

1—

(2-

Theorem (2-4-3) :
Assume that the trivial solution of (2,8) is asymptotically stable.

Let C denote the real symmetric positive definite matrix satisfying :

(A+B)' C+C(A+B)=—1 (2-
33)

where | is the n x n identity matrix. Let ty be the positive constant
defined by :

1 A /2
o-(z(lal-lepicel) {22 e
34)

where  Amin » Amax  respectively denote the smallest and largest

eigenvalues of C. Then the trivial solution of (2,7) is asymptotically
stable for all t<rg.

finally , we had studied an example number .



